Proteolysis of the major yolk glycoproteins is regulated by acidification of the yolk platelets in sea urchin embryos

نویسندگان

  • S K Mallya
  • J S Partin
  • M C Valdizan
  • W J Lennarz
چکیده

The precise function of the yolk platelets of sea urchin embryos during early development is unknown. We have shown previously that the chemical composition of the yolk platelets remains unchanged in terms of phospholipid, triglyceride, hexose, sialic acid, RNA, and total protein content after fertilization and early development. However, the platelet is not entirely static because the major 160-kD yolk glycoprotein YP-160 undergoes limited, step-wise proteolytic cleavage during early development. Based on previous studies by us and others, it has been postulated that yolk platelets become acidified during development, leading to the activation of a cathepsin B-like yolk proteinase that is believed to be responsible for the degradation of the major yolk glycoprotein. To investigate this possibility, we studied the effect of addition of chloroquine, which prevents acidification of lysosomes. Consistent with the postulated requirement for acidification, it was found that chloroquine blocked YP-160 breakdown but had no effect on embryonic development. To directly test the possibility that acidification of the yolk platelets over the course of development temporally correlated with YP-160 proteolysis, we added 3-(2,4-dinitroanilo)-3-amino-N-methyldipropylamine (DAMP) to eggs or embryos. This compound localizes to acidic organelles and can be detected in these organelles by EM. The results of these studies revealed that yolk platelets did, in fact, become transiently acidified during development. This acidification occurred at the same time as yolk protein proteolysis, i.e., at 6 h after fertilization (64-cell stage) in Strongylocentrotus purpuratus and at 48 h after fertilization (late gastrula) in L. pictus. Furthermore, the pH value at the point of maximal acidification of the yolk platelets in vivo was equal to the pH optimum of the enzyme measured in vitro, indicating that this acidification is sufficient to activate the enzyme. For both S. purpuratus and Lytechinus pictus, the observed decrease in the pH was approximately 0.8 U, from 7.0 to 6.2. The trypsin inhibitor benzamidine was found to inhibit the yolk proteinase in vivo. By virtue of the fact that this inhibitor was reversible we established that the activity of the yolk proteinase is developmentally regulated even though the enzyme is present throughout the course of development. These findings indicate that acidification of yolk platelets is a developmentally regulated process that is a prerequisite to initiation of the catabolism of the major yolk glycoprotein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective transport and packaging of the major yolk protein in the sea urchin.

The major yolk protein of sea urchins is an iron-binding, transferrin-like molecule that is made in the adult gut. Its final destination though is the developing oocytes that are embedded in somatic accessory cells and encompassed by two epithelial layers of the ovary. In this study, we address the dynamics of yolk transport, endocytosis, and packaging during the vitellogenic phase of oogenesis...

متن کامل

Changes in yolk platelet pH during Xenopus laevis development correlate with yolk utilization. A quantitative confocal microscopy study.

The variations of the pH in Xenopus yolk platelets have been estimated by fluorescence confocal microscopy and computer image processing. For pH measurements in vitellogenic oocytes, the pH-sensitive fluorescent dye, DM-NERF, was coupled to vitellogenin, and the DM-NERF-vitellogenin was taken up by oocytes via receptor-mediated endocytosis. Dual emission ratio measurements of internalized DM-NE...

متن کامل

Direct molecular interaction of a conserved yolk granule protein in sea urchins.

The regulation of yolk storage in oocytes and subsequent utilization in embryos is critical for embryogenesis. In sea urchins, the major yolk protein is made in the intestines, transported to the ovaries and accumulated in developing oocytes within membrane-bound vesicles comprising approximately 10% of the mass of an egg. Here, a non-yolk protein that accumulates specifically in yolk granules ...

متن کامل

The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus.

Little is known about how metabolism changes during development. For most animal embryos, yolk protein is a principal source of nutrition, particularly of essential amino acids. Within eggs, yolk is stored inside large organelles called yolk platelets (YPs). We have gained insight into embryonic nutrition in the African clawed frog Xenopus laevis by studying YPs. Amphibians follow the ancestral...

متن کامل

Determination of developmental stages of embryo in the Sea Urchin, Echinometra mathaei

Sea Urchin is one of the most useful tools in developmental biology studies because this organism has the simplest kind of developmental stages. We aimed to determine developmental stages and timetable of Echinometra mathaei embryo (the species of Persian Gulf). The spawning of E. mathaei was induced by 0.5M KCl injection (1ml) into the coelomic cavity. After fertilization, embryos were placed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 117  شماره 

صفحات  -

تاریخ انتشار 1992